Development of the Updated SAPRC Chemical Mechanism

William P. L. Carter CE-CERT, University of California, Riverside, CA August 28, 2007

Outline

- Overview of the SAPRC mechanisms
- Updates for SAPRC-07
- Anticipated changes in ambient ozone predictions
- Changes in ozone reactivity (MIR) values
- Recommendations

Mechanism Use and Requirements

Used in airshed models to:

- Represent the chemistry of formation of secondary pollutants (e.g., O₃) from emitted VOCs and NO_x
- Predict relative ozone reactivity scales for VOCs (Δ O₃ / Δ VOC) for regulatory applications (e.g, MIR scale used in California)

Requirements

- Represent current state of science of atmospheric chemistry
- Give predictions consistent with environmental chamber results
- Appropriately represent the hundreds of types of VOCs for reactivity scale calculations
- Represent complex ambient mixtures in airshed calculations in computationally efficient manner

Major Components of SAPRC Mechanisms

Base Mechanism

Reactions of inorganics and common organic products

Mechanisms for individual VOCs (hundreds of VOCs represented)

- Mechanism generation system used to derive fully explicit mechanisms that are condensed using "lumping rules"
- Estimated mechanisms are used for compounds whose explicit mechanisms cannot be estimated (e.g. aromatics)

Condensed mechanisms for airshed models

- Mechanisms for limited number of "lumped model species" derived from those of the mixture of individual VOCs they represent
- These depend on the composition of the mixture taken as representative of VOC emissions from all sources

SAPRC-99 Mechanism Generation System

- Generates mechanisms for reactions of alkanes, alkenes, alkynes, aldehydes, ethers, esters, nitrates, acids and most of their oxidation products with OH, O₃, NO₃, O³P and photolysis
- Measured rate constants (or rate constant ratios) are used where available. Estimation methods are used otherwise.
- Estimation Methods
 - Structure-reactivity estimates for OH, O₃, and NO₃ reactions
 - Nitrate yields from RO₂+NO based on size of the RO₂ radical and limited data on effects of substituents
 - Alkoxy radical estimates based (primarily) on correlations between rate constants and heats of reaction.
 - Other estimates based on extrapolations from known reactions adjustments to fit chamber data

Operation of Mechanism Generation System

Examples of Sizes of Generated Mechanisms

Compound	Reactions	<u>Products</u>
n-Butane	20	8
Butoxy ethanol	54	22
Propylene glycol methyl ether acetate	84	27
n-Dodecane	120	37
6-methyl tetradecane	521	167
2-methyl-2-octyl cyclohexane	1618	520
Toluene (SAPRC07 system)	172	22

Note:

- This does not count the oxidation product reactions
- Peroxy + peroxy reactions are not generated

8/27/2007

Limitations of SAPRC-99 Mechanism Generation System

- Only generates mechanisms for systems with NO_x. (Peroxy radicals reacted only with NO. Peroxy + peroxy reactions are not generated. RC(O)O₂ radicals are treated as products)
- Limitations in thermochemical group estimate data limits types of alkoxy radicals for which estimates can be made.
- Estimation methods are very uncertain for photolysis reactions.
- Unsaturated radicals might undergo a wide variety of reactions for which estimation methods are unknown or very uncertain.
 Thermochemical data insufficient to support estimation methods
- System does not take steric effects into account
- The System used for SAPRC-99 could not process compounds with more than one double bond or more than one ring.

Status of SAPRC Mechanisms

The current version in use is SAPRC-99

- Represents the state of the science as of 1999
- Used to calculate the MIR reactivity scale used in some CARB regulations. (Scales updated in 2002 with some VOCs' mechanisms updated)
- Many airshed models use "Fixed Parameter" SAPRC-99 with condensed model species based on the "base ROG" mixture used in the reactivity scale calculations

Updated version (SAPRC-07) is now complete

- Developed under CARB funding, draft report approved by RSC
- Development, evaluation, and documentation completed.
 Implementation work remains.

Major Objectives of Mechanism Update

- Update rate constants and reactions to current state of science
- Add chlorine chemistry
- Improve mechanisms for aromatics to incorporate new data and improve performance in simulating available chamber data.
- Update and enhance mechanism generation system
 - Update estimation methods and assignments as needed
 - Enhance capabilities, e.g., to support generating explicit mechanisms for aromatics and chlorine atom reactions
- Improve capability to be adapted to secondary PM models
- Represent additional types of VOCs of interest to the CARB
- Develop new condensed mechanisms from detailed version (including a highly condensed version as an alternative to CB4)

Mechanism Updates -Base Mechanism

- Inorganic and organic product mechanisms updated based on recent evaluations and data
- Added Inorganic CIO_x reactions and new model species to represent reactive CI-substituted carbonyl oxidation products

Potentially important rate constant changes	Change
$OH + NO_2 + M \rightarrow HNO_3 + M (1 atm, 298K)$	+19%
Generic peroxy + HO ₂ → Generic hydroperoxides + O ₂	-47%
$NO_2 + hv \rightarrow NO + O(^3P)$	+8% *
Lumped higher ketone (PROD2) photolysis	-75% *
Methyl glyoxal photolysis	42% *
Methacrolein and lumped C ₅ isoprene product photolys	is 45% *
	* Solar light

Mechanism Updates -Mechanism Generation System

- Assigned VOC + OH, O₃, NO₃, and O³P rate constants updated
- Capability to generate chlorine atom + VOC reactions added
 - Structure-reactivity methods to estimate rate constants
 - Mechanisms can be generated for saturated compounds, but alkene mechanism generation limited by lack of thermochemical group data for Cl-containing radicals
- Capability to represent compounds and radicals with more than one ring and more than one double bond added
 - Used as aid in development of mechanisms for aromatics
- Methods developed to generate initial reactions of OH, O₃, and NO₃ with the unsaturated dicarbonyl ring opening products
 - No methods exist to estimate unsaturated dicarbonyl photolyses, which need to be specified manually

Mechanism Updates -- Aromatic Mechanisms

- SAPRC-99 uses parameterized species with adjusted yields and photolysis rates for uncharacterized ring opening products.
 - Adjusted to fit aromatic NO_x experiments.
 - Model gives poor fits to effects of adding CO to aromatic -NO_x experiments and to measurements of direct reactivity
- SAPRC-07 aromatic mechanism update approach:
 - Estimate explicit mechanisms for ring-opening reactions and reactions of unsaturated dicarbonyl ring-opening products, based on data in Calvert et al. review to extent possible.
 - Condensed mechanisms for airshed models derived based on explicit mechanisms so developed
 - Adjust relative yields of photoreactive and non-photoreactive products based on simulations of chamber data

Ring Opening Mechanism Assumed

- Branching ratios <u>do not</u> depend on NO_x levels
- Yields of α -dicarbonyls based on measurements
- Unsaturated 1,4-dicarbonyl yields based on α-dicarbonyl co-product yields
- Rest of ring opening is OH

 + diunsaturated dicarbonyl,
 formed with no NO to NO₂
 conversions

Alternative Ring Fragmentation Mechanism

This mechanism predicts that the yields of α -dicarbolyls and the highly photoreactive unsaturated dicarbonyl products will depend on NO_x levels. This is not consistent with product yield or chamber data.

Reactions of Aromatic Products

- Parameterized mechanisms for phenols and cresols unchanged
- Mechanisms for α -dicarbonyls updated based on evaluations
- Mechanism for model species representing unsaturated dicarbonyls derived based on estimated mechanisms for such compounds formed from the alkylbenzenes
- For unsaturated 1,4-dialdehydes and aldehyde-ketones:
 - Assumed to photolyze rapidly based on data in Calvert et al.
 - Two model species used: one (AFG1) that photolyzes to form radicals and one (AFG2) that forms stable molecules
 - Relative yields of these adjusted based on simulations of chamber data for individual aromatics
- For di-unsaturated 1,6-dicarbonyls and also 1,4-diketones:
 - Lumped into separate model species (AFG3) that is assumed not to photolyze, based on data in Calvert et al.

Model Performance Simulating a Measurement of Direct Reactivity

- Direct reactivity is the number of NO to NO₂ conversions caused by a VOC's reactions
- A HONO + VOC photolysis flow system gives a measurement sensitive to direct reactivity
- SAPRC-99 overpredicts direct reactivities of aromatics by up to a factor of 2
- SAPRC-07 aromatics mechanism somewhat more consistent with direct reactivity data

Model Performance in Simulating Effect of Adding CO to Aromatic - NOx Experiments

Mechanism Updates -- Improved Capability for Representing Low-NO_x Products

- Approximate methods are required to represent the peroxy + peroxy reactions important under low NO_x conditions for the mechanisms to have reasonable size.
- Because of the way this is represented in SAPRC-99 (like CB4/05), it is difficult to "un-lump" model species for organic hydroperoxides or organic nitrate products.
- But higher molecular weight organic hydroperoxides and organic nitrates may be important precursors to SOA
- SAPRC-07 uses a new representation of peroxy radical reactions that permits use of separate hydroperoxide and organic nitrate species, depending on volatility or other factors
- For example, the current mechanism uses a separate model species for aromatic hydroperoxides, which may be useful to model NO_x-dependence of SOA yields from aromatics

SAPRC-07 Mechanism Development

Representation of Peroxy Products

(Excluding nitrate formation)

	Reaction	Explicit Products	SAPRC-99	SAPRC-07
	RO ₂ + NO	Alkoxy radical products	Alkoxy radical products	Alkoxy radical products
	RO ₂ + HO ₂	Hydroperoxide product	Alkoxy radical products + single lumped ROOH	Hydroperoxide product depends on RO ₂
	RO ₂ + RCO ₃	Disproportionation products		Ketone product depends on RO ₂
		½ disproportionation products	Alkoxy radical products	Ketone product depends on RO ₂
KO ₂ + KO ₂	RO ₂ + RO ₂	½ Alkoxy radical products		Alkoxy radical products

Major Reaction when NOx is low

Example of Representation of Peroxy Products

Representation of reaction where: VOC + OH
$$\rightarrow$$
 RO₂
RO₂ + NO \rightarrow NO₂ + RO; RO + O₂ \rightarrow HO₂ + PROD (90%)
RO₂ + NO \rightarrow RNO3 (10%)

Represented in SAPRC-99 as:

VOC + OH \rightarrow 0.9 {RO2-R. + PROD} + 0.1 RO2-N.

Reaction	RO2-R.	<u>PROD</u>	RO2-N.
NO	- NO + NO ₂ + HO ₂	PROD	- NO + RNO3
NO ₃	- NO ₃ + NO ₂ + HO ₂	PROD	- NO + MEK + HO ₂
HO ₂	- HO ₂ + ROOH	PROD	- HO ₂ + ROOH
$RO_2 \cdot \rightarrow RO \cdot$	- RO ₂	PROD	- RO ₂ + ½ MEK + ½ PROD2 + HO ₂
$RO_2 \cdot \rightarrow oth$	- RO ₂	PROD	- RO ₂ + ½ MEK + ½ PROD2 + HO ₂
RC(O)O ₂ ·	- RC(O)O ₂ ·	PROD	- RC(O)O ₂ · + PROD2

Example of Representation of Peroxy Products

Representation of reaction where: VOC + OH
$$\rightarrow$$
 RO₂
RO₂ + NO \rightarrow NO₂ + RO; RO + O₂ \rightarrow HO₂ + PROD (90%)
RO₂ + NO \rightarrow RNO3 (10%)

Represented in SAPRC-07 as:

VOC + OH
$$\rightarrow$$
 0.9 {RO2C + xHO2 + xPROD} + 0.1 {RO2XC + zRNO3} + yROOH

Reaction	RO2C	<u>xHO2</u>	RO2XC	<u>xPROD</u>	<u>yROOH</u>	zRNO3
NO	- NO + NO ₂	HO ₂	- NO	PROD		RNO3
NO ₃	- NO ₃ + NO ₂	HO ₂	- NO ₃	PROD		
HO ₂	- HO ₂		- HO ₂		ROOH	
$RO_2 \rightarrow RO$	- RO ₂	HO ₂	- RO ₂	PROD		PROD2 + HO ₂
$RO_2 \cdot \rightarrow oth$	- RO ₂		- RO ₂		PROD2	
RCO ₃ ·	- RCO ₃ ·		- RCO ₃ ·		PROD2	

Mechanism Updates – Mechanisms for Many Types of VOCs Added or Improved

- Number of distinct VOC mechanisms increased from 585 to 710 (a 21% increase)
- Added or improved mechanisms include:
 - Added alkanes and alkenes in emissions inventories not previously represented
 - Separate estimated mechanisms for higher alkylbenzenes, depending on structure (SAPRC-99 used "lumped molecule" representation based on methylbenzenes)
 - Improved estimates for halogenated compounds, based on chlorine chemistry

Evaluation Against Chamber Experiments

 Mechanism evaluated against available UCR and TVA environmental chamber data base + some UNC experiments

Chambers	UCR	TVA	UNC
Indoor - Blacklight or mixed	4	1	
Indoor - Arc light	4		
Outdoor	1		1

Types of Experiments	Runs	VOCs	Types
Characterization	247		10
Single VOC	671	46	
Incremental Reactivity	571	111	
Mixtures	949		22

 Performance simulating chamber data comparable to SAPRC99 (somewhat better in some cases, not quite as good in others)

Evaluation Results: Model Errors for All Single VOC Experiments

Evaluation Results: Model Errors for Propene Experiments

Average model error vs. hour of run

Evaluation Results: Model Errors for m-Xylene Experiments

Average model error vs. hour of run

Evaluation Results: Model Errors for All Mixture Experiments

Evaluation Results: Model Errors for Earlier UCR and TVA Mixture Experiments

Average model error vs. hour of run

Model Performance Simulating UCR-EPA Chamber Surrogate - NOx Runs

Problem of O₃ underprediction at low ROG/NO_x still exists

Lumped Mechanism for Airshed Models

- A "Fixed Parameter" mechanism for airshed models was derived using same lumping approach as "Fixed Parameter" SAPRC-99
- Parameters for lumped species based on the base ROG mixture used in the reactivity scenarios
 - Mixture based on ambient air measurements in mid-1980's (Probably needs to be updated)
 - Same mixture as used for "Fixed Parameter" SAPRC-99
- Emissions assignments have been updated and added to emissions speciation database
- Mechanism slightly larger than SAPRC-99. Because of time constraints, more condensed versions of SAPRC-07 have not yet been developed
- Used as base case in reactivity calculations

Calculation of Updated Reactivity Scales

- Updated mechanism used to calculate MIR, MOIR, EBIR, and "Base Case" reactivity scales.
- The scenarios and calculation methodology used is exactly the same as used for SAPRC-99 reactivity scales.
- Reactivities calculated for a total of 1064 Types of VOCs, including
 - 710 VOCs represented explicitly
 - 302 VOCs represented by the "Lumped molecule" method
 - 52 Complex mixtures (e.g., exhausts, petroleum distillates)
- This includes 293 types of VOCs not in 2002 SAPRC-99 scales.
- Note: Reactivities of amines have been deleted until an improved estimated amine mechanisms can be developed.

Effect of Mechanism Update on Calculated Maximum O₃ in the Box Model Scenarios Used for the Reactivity Scale Calculations

Effect of Mechanism Update on Calculated Maximum O₃ in the Box Model Scenarios With Same NO_x Levels

Changes in Ozone Reactivity Values in the MIR Scale

Incremental Reactivity (gm O3 / gm VOC) MIR Scale

Compounds

— 1:1 and +/- 30% lines

VOCs with Large MIR Changes

Compound	Approx (mass Old		Reason for change
3-Methoxy-1-butanol	1.0	3.8	Rate constant error corrected
2-(Cloromethyl)-3- chloropropene	3.1	6.8	Chloronated ketones assumed to be more photoreactive
Trans-1,2-dichloro- ethene	8.0	1.7	Chloroacetaldehyde believed to be more photoreactive
Indene	3.2	1.5	Represented by styrene (was represented by tetralin)
Furan	16.5	9.0	More explicit mechanism (was represented by m-xylene)

Remaining Work – Near Term

- Mechanism needs to be implemented into full airshed models
 - Files to implement mechanism in preparation
 - Software modifications may be needed to implement new peroxy radical "Operator" reactions
- New mechanisms for amines need to be developed
 - New chamber data indicate that amine mechanisms in the draft report are invalid and had to be deleted
 - Analysis of amine chamber data underway and estimated amine mechanisms be available by end of September
- Condensed version of mechanism needs to be developed (not currently funded)
- Mechanism needs to undergo peer review

Recommended Research – Base Mechanism

- Reasons for model performance problems in simulating existing chamber data need to be elucidated
 - Why do current mechanisms underpredict O₃ in surrogate experiments at low concentrations and ROG/NOx?
 - Why did mechanism updates cause fits to chamber data to be slightly worse for some types of mixture experiments?
 - What is the implications of these discrepancies in simulations of ambient conditions?
 - What uncertain rate constants affect these performance issues?
 - What is most needed research to address these issues?
- Uncertainty analysis and process analysis may be useful, but new mechanism performance analysis approaches are needed.

Recommended Research -- Aromatics

- Although updated and more chemically reasonable, the aromatics mechanisms is still highly simplified and not consistent with all current laboratory and chamber results
- Attempts to develop explicit mechanisms that can predict reactivity differences among aromatic isomers were not successful
- Improved aromatics mechanisms will probably require breakthroughs in measurement methods and theory
 - Need reliable methods to identify and quantify <u>all</u> products
 - Need better theory and estimation methods that can predict reactions of ring-opening intermediates and products
- In the meantime, systematic examination of effects of alternative aromatics representations may be useful to assess effects of aromatics uncertainties on model predictions

Recommended Research – Mechanism Generation System

- The mechanism generation system is critical for estimating mechanisms for many VOCs for which no data are available.
- There was not sufficient time in the project to update the many estimation methods used in the system. This is still needed.
- Lack of estimation assignments for reactions of halogenated radicals makes generation of chlorine + alkene reactions difficult
- Methods to estimate volatility of products (to serve as a basis for lumping for SOA models) needs to be implemented.
- The mechanism generation system and its estimation methods need to be documented in the peer-reviewed literature
- Estimation methods should be compared with those used in the European Master Chemical Mechanism

Recommended Research – Mechanism Adaptation to SOA Predictions

- Adapting SAPRC-07 for PM and SOA predictions represents an integrated approach for developing improved mechanisms for both ozone and PM. This requires:
 - Adding new organic product model species to represent lowvolatility SOA precursors (including hydroperoxides and nitrates.)
 - Incorporating estimates of volatility in the mechanism generation system
 - Evaluating PM predictions against results of well characterized chamber experiments with PM measurements at ambient concentration levels.
- More funding for well-characterized chamber experiments for PM mechanism evaluation is needed

Recommended Research – Environmental Chamber Database

- Need to take advantage of unique capabilities of UCR EPA chamber for PM and SOA Mechanism evaluation
 - Allows well-characterized experiments at ambient levels
 - New advanced instrumentation obtained from a Keck grant
 - Current support level insufficient to maintain existing facility
- Methods needed to improve sensitivity of chamber experiments to effects of oxidation products on reactivity
- Chamber data are still not adequate to evaluate model predictions of temperature effects on pollutant formation
- Mechanisms still highly uncertain for some types of compounds
 - Examples include amines, most halogenated compounds

Recommended Research – Updated Reactivity Scale

- The work of the RRWG towards developing improved reactivity assessment methods needs to be completed.
- At a minimum, the scenarios used in the current reactivity calculations are way out of date and need to be updated.
 - Derivation of existing scenarios is poorly documented
 - The scenarios represent pollutant levels much higher than current situation (the LA Scenario gives O3^{max}>500 ppb!)
 - Methods exist to derive box model scenarios from grid calculations
- The base ROG mixture needs to be updated based on current emissions and measurements. (Also needed for updated lumped mechanisms)
- Failure to use best scenarios and methods will eventually cause loss of credibility of reactivity-based regulatory programs